E‘% WE!NTEK

Macro Reference

Name GetData
Syntax GetData(read_data[start], device_name, device_type, address_offset,
data_count)
or
GetData(read_data, device_name, device_type, address_offset, 1)
Description | Receives data from the PLC. Data is stored into read_ data[start]~

read_data[start + data_count - 1].

Data_count is the amount of received data. In general, read_data is an array,
but if data_count is 1, read_data can be an array or an ordinary variable.
Below are two methods to read one word data from PLC.

macro_command main()

short read_data_1[2], read_data_2
GetData(read_data_1[0], “FATEK KB Series”, RT, 5, 1)
GetData(read_data 2, “FATEK KB Series”, RT, 5, 1)
end macro_command

Device_name is the PLC name enclosed in the double quotation marks (“) and
this name has been defined in the device list of system parameters as follows
(see FATEK KB Series):

System Farameter Sethings §|
Font Extended Memoms PrinteriBackop Server
Device tModel Creneral Spstem Setting Security

Diervice list :

Mo, MHame Location Device type Interf... |IF...| 5t...
Local HMI Local HRI Local MTA0564 (320 x| Disable |M/L NJL
Local Ber... MODEUE RETU ... Local Free Protocol CoOrM1.RE.0
Femote P 1FATEE FB Series | FemoteJP:21068.117 2. |FATEE FB Series |COMI1 .| B

Device_type is the device type and encoding method (binary or BCD) of the
PLC data. For example, if device_type is LW_BIN, it means the register is LW
and the encoding method is binary. If use BIN encoding method, “_BIN” can be
ignored.

If device type is LW_BCD, it means the register is LW and the encoding

439

D WE!NTEK

Macro Reference

method is BCD.

Address_offset is the address offset in the PLC.
For example, GetData(read data_1[0], “FATEK KB Series’, RT, 5, 1)
represents that the address offset is 5.

If address_offset uses the format — “N#AAAAA”, N indicates that PLC’s station
number is N. AAAAA represents the address offset. This format is used while
multiple PLCs or controllers are connected to a single serial port. For example,
GetData(read_data_1[0], “FATEK KB Series”, RT, 2#5, 1) represents that the
PLC’s station number is 2. If GetData() uses the default station number
defined in the device list as follows, it is not necessary to define station number
in address_ offset.

PLC ype : |FATEI{ FBE Series v|

V.1.10, FATEK_FB.so

PLC I/F : |RS—232 v| PLC default station no. 1 2
COM : [cOM1 {9600,E,7,1) rrre—

Use broadcast command

The number of registers actually read from depends on both the type of the
read_data variable and the value of the number of data_count.

type of data_count | actual number of 16-bit register
read_data read
char (8-bit) 1 1
char (8-bit) 2 1
bool (8-bit) 1 1
bool (8-bit) 2 1
short (16-bit) 1 1
short (16-bit) 2 2
int (32-bit) 1 2

440

D WE!NTEK

Macro Reference

int (32-bit) 2 4
float (32-bit) 1 2
float (32-bit) 2 4

When a GetData() is executed using a 32-bit data type (int or float), the
function will automatically convert the data. For example,

macro_command main()

float f

GetData(f, "MODBUS", 6x, 2, 1) // f will contain a floating point value
end macro_command

Example

macro_command main()
bool a

bool b[30]

short ¢

short d[50]

inte

int f{10]

double g[10]

/I get the state of LB2 to the variable a
GetData(a, “Local HMI”, LB, 2, 1)

/I get 30 states of LBO ~ LB29 to the variables b[0] ~ b[29]
GetData(b[0], “Local HMI”, LB, 0, 30)

/I get one word from LW2 to the variable ¢
GetData(c, “Local HMI”, LW, 2, 1)

/I get 50 words from LWO ~ LWA49 to the variables d[0] ~ d[49]
GetData(d[0], “Local HMI”, LW, 0, 50)

/I get 2 words from LW6 ~ LW7 to the variable e
/I note that the type of e is int
GetData(e, “Local HMI”, LW, 6, 1)

/I get 20 words (10 integer values) from LWO ~ LW19 to variables f[0] ~ f[9]

441

D WE!NTEK

Macro Reference

/I since each integer value occupies 2 words
GetData(f[0], “Local HMI”, LW, 0, 10)

/I get 2 words from LW2 ~ LW3 to the variable f
GetData(f, “Local HMI”, LW, 2, 1)

end macro_command

Name

GetDataEx

Syntax

GetDataEx (read_datal[start], device_name, device_type, address_offset,
data_count)

or
GetDataEx (read_data, device_name, device_type, address_offset, 1)

Description

Receives data from the PLC and continue executing next command even if
no response from this device.

Descriptions of read_data, device_name, device_type, address_offset and
data_count are the same as GetData.

Example

macro_command main()
bool a

bool b[30]

short c

short d[50]

inte

int f[10]

double g[10]

/I get the state of LB2 to the variable a
GetDataEx (a, “Local HMI”, LB, 2, 1)

/I get 30 states of LBO ~ LB29 to the variables b[0] ~ b[29]
GetDataEx (b[0], “Local HMI”, LB, 0, 30)

/I get one word from LW2 to the variable c
GetDataEx (c, “Local HMI”, LW, 2, 1)

/I get 50 words from LWO ~ LWA49 to the variables d[0] ~ d[49]

442

E‘ WE!NTEK

Macro Reference

GetDataEx (d[0], “Local HMI”, LW, 0, 50)

/I get 2 words from LW6 ~ LW7 to the variable e
/I note that he type of e is int
GetDataEx (e, “Local HMI”, LW, 6, 1)

/I get 20 words (10 integer values) from LWO0 ~ LW19 to f[0] ~ f[9]
/I since each integer value occupies 2 words

GetDataEx (f[0], “Local HMI”, LW, 0, 10)

/I get 2 words from LW2 ~ LW3 to the variable f
GetDataEx (f, “Local HMI”, LW, 2, 1)

end macro_command

Name SetData
Syntax SetData(send_data[start], device_name, device_type, address_offset,
data_count)
or
SetData(send_data, device_name, device type, address_offset, 1)
Description | Send data to the PLC. Data is defined in send_data[start]~ send_data[start

+ data_count - 1].

data_count is the amount of sent data. In general, send_data is an array,
but if data_count is 1, send_data can be an array or an ordinary variable.
Below are two methods to send one word data.

macro_command main()

short send_data_1[2] = { 5, 6}, send_data 2=5
SetData(send_data_1[0], “FATEK KB Series”, RT, 5, 1)
SetData(send_data_2, “FATEK KB Series”, RT, 5, 1)
end macro_command

device_name is the PLC name enclosed in the double quotation marks (%)
and this name has been defined in the device list of system parameters.

device_type is the device type and encoding method (binary or BCD) of the
PLC data. For example, if device type is LW_BIN, it means the register is

443

D WE!NTEK

Macro Reference

LW and the encoding method is binary. If use BIN encoding method, “ BIN”
can be ignored.

If device type is LW_BCD, it means the register is LW and the encoding
method is BCD.

address_offset is the address offset in the PLC.
For example, SetData(read_data_1[0], “FATEK KB Series”, RT, 5, 1)
represents that the address offset is 5.

If address offset uses the format — “N#AAAAA”, N indicates that PLC’s
station number is N. AAAAA represents the address offset. This format is
used while multiple PLCs or controllers are connected to a single serial port.
For example, SetData(read_data_1[0], “FATEK KB Series”, RT, 2#5, 1)
represents that the PLC’s station number is 2. If SetData () uses the default
station number defined in the device list, it is not necessary to define station
number in address_offset.

The number of registers actually sends to depends on both the type of the
send_data variable and the value of the number of data_count.

type of data_count | actual number of 16-bit register
read_data send
char (8-bit) 1 1
char (8-bit) 2 1
bool (8-bit) 1 1
bool (8-bit) 2 1
short (16-bit) 1 1
short (16-bit) 2 2
int (32-bit) 1 2
int (32-bit) 2 4
float (32-bit) 1 2
float (32-bit) 2 4

When a SetData() is executed using a 32-bit data type (int or float), the

444

E‘ WE!NTEK

Macro Reference

function will automatically send int-format or float-format data to the
device. For example,

macro_command main()

float f = 2.6

SetData(f, "MODBUS", 6x, 2, 1) /[will send a floating point value to the
device

end macro_command

Example

macro_command main()

inti
bool a = true
bool b[30]
short ¢ = false
short d[50]
inte=25
int f[10]
fori=01to 29
b[i] = true
next i
fori=01to 49
dlij=i*2
next i
fori=0to 9
flij=i*3
next i

/| set the state of LB2
SetData(a, “Local HMI”, LB, 2, 1)

/| set the states of LBO ~ LB29
SetData(b[0], “Local HMI”, LB, 0, 30)

/| set the value of LW2
SetData(c, “Local HMI”, LW, 2, 1)

445

D WE!NTEK

Macro Reference

/| set the values of LWO ~ LW49
SetData(d[0], “Local HMI”, LW, 0, 50)

/I set the values of LW6 ~ LW7, note that the type of e is int
SetData(e, “Local HMI”, LW, 6, 1)

/I set the values of LWO ~ LW19

/I 10 integers equal to 20 words, since each integer value occupies 2
words.

SetData(f[0], “Local HMI”, LW, 0, 10)

end macro_command

Name SetDataEx
Syntax SetDataEx (send_data[start], device_name, device_type, address_offset,
data_count)
or
SetDataEx (send_data, device_name, device type, address_offset, 1)
Description | Send data to the PLC and continue executing next command even if no
response from this device.
Descriptions of send_data, device_name, device type, address_offset and
data_count are the same as SetData.
Example macro_command main()

inti

bool a = true
bool b[30]
short ¢ = false
short d[50]
inte=5

int f{10]

fori=0to 29
b[i] = true

next i

fori=0to 49

446

D WE!NTEK

Macro Reference

diij=i*2
next i
fori=0to9
fli]=i*3
next i

/I set the state of LB2
SetDataEx (a, “Local HMI”, LB, 2, 1)

/I set the states of LBO ~ LB29
SetDataEx (b[0], “Local HMI”, LB, 0, 30)

/I set the value of LW2
SetDataEx (c, “Local HMI”, LW, 2, 1)

/I set the values of LWO ~ LW49
SetDataEx (d[0], “Local HMI”, LW, 0, 50)

/I set the values of LW6 ~ LW7, note that the type of e is int

SetDataEx (e, “Local HMI”, LW, 6, 1)

/| set the values of LWO ~ LW19

/I 10 integers equal to 20 words, since each integer value occupies 2

words.
SetDataEx (f[0], “Local HMI”, LW, 0, 10)

end macro_command

Name GetError

Syntax GetError (err)
Description | Get an error code.
Example macro_command main()

short err
char byData[10]

447

