
SlimLine IEC61131-3 Programming

1 Communication protocols

1.1 Modbus protocol

Modbus is a serial communication protocol became a de facto standard in industrial communication, and is now the
most widely used connection protocol among industrial electronics devices. It is a protocol based on request/response
and offers services specified by function codes.

SlimLine supports the Modbus RTU protocol on the serial ports and Modbus over IP with Ethernet connection on port
502. The Modbus RTU protocol on the serial port has the default communication parameters 115200, e, 8, 1 and the
node address for both serial port and TCP/IP is 1.

1.1.1 Access to variables from modbus

The modbus functions allow to access to MX100 user memory. The supported functions are:

Code Function Object type Access type Address range

01h Read coil status Single bit Read 40000-44095 (20000-24095) (Note 1)

02h Read input status Single bit Read 40000-44095 (20000-24095) (Note 1)

03h Read holding registers Word (16 Bit) Read 40000-42047 (20000-22047) (Note 2)

04h Read input registers Word (16 Bit) Read 40000-42047 (20000-22047) (Note 2)

05h Force single coil Single bit Write 40000-44095 (20000-24095) (Note 1)

06h Preset single register Word (16 Bit) Write 40000-42047 (20000-22047) (Note 2)

10h Preset multiple registers Word (16 Bit) Write 40000-42047 (20000-22047) (Note 2)

From software version SFW167D000 the addressable area is also in the range from 20000 to 2xxxx.

Note 1) In the functions that access the single-bit (every bit equals to one byte of memory), the address of the variable in
the command is used. So having to access to the MX100.50 location, the address value will be 40050.

Note 2) In the functions that access the registers (16 bits) the address of the variable divided by 2 is used. So having to
reach the MX100.50 location, the value 40025 will be used.

1.1.2 Reading variables from modbus

To read variables, the Read Holding registers (code 0x03) command is used. Assuming you have to read a DWORD
variable allocated in memory at MX100.64 address, this is the formula to calculate the address:

((Address of variable/2)+Offset)-1 → ((64/2)+40000)-1=40031 → 0x9C5F

Being a DWORD variable, we read 2 consecutive registers starting from address allocation. Assuming that the value of
the variable is 0x12345678, we have:

Modbus RTU frames

Command frame: 01 03 9C 5F 00 02 DA 49
Answer frame: 01 03 04 56 78 12 34 66 D5

Modbus TCP/IP frames

Command frame: 00 00 00 00 00 06 01 03 9C 5F 00 02
Answer frame: 00 00 00 00 00 07 01 03 04 56 78 12 34

The representation of data in SlimLine is Little-Endian. The numbering starts from the least significant byte and ending
with the most significant. So as you can see from the response string, the value of the 32-bit variable 0x12345678 is
returned in two 16-bits registers with values 0x5678, 0x1234.

Q09 Pag. 1/5

SlimLine IEC61131-3 Programming

1.1.3 Writing variables from modbus

To write variables, the Preset multiple registers (code 0x10) command is used. Assuming you have to write to a
DWORD variable allocated in memory at MX100.64 address, this is the formula to calculate the address:

((Address of variable/2)+Offset)-1 → ((64/2)+40000)-1=40031 → 0x9C5F

Being a DWORD variable, we will write 2 consecutive registers starting from address allocation. Assuming that we need
to write the value 0x12345678 in the variable, we have:

Modbus RTU frames

Command frame: 01 10 9C 5F 00 02 04 56 78 12 34 D3 33
Answer frame: 01 10 9C 5F 00 02 5F 8A

Modbus TCP/IP frames

Command frame: 00 00 00 00 00 0B 01 10 9C 5F 00 02 04 56 78 12 34
Answer frame: 00 00 00 00 00 06 01 10 9C 5F 00 02

The representation of data in SlimLine is Little-Endian. The numbering starts from the least significant byte and ending
with the most significant. So as you can see from the response string, the 32-bit value to write 0x12345678 is splitted in
two 16-bits registers with values 0x5678, 0x1234.

Q09 Pag. 2/5

SlimLine IEC61131-3 Programming

1.1.4 Access to Real time clock from modbus

It is possible to access to real time clock data using Modbus commands to access registers. The supported functions
are:

Code Function Tipo oggetto Tipo accesso Range indirizzo

03h Read holding registers Word (16 Bit) Read 100-105 (150 for Epoch time)

04h Read input registers Word (16 Bit) Read 100-105 (150 for Epoch time)

06h Preset single register Word (16 Bit) Write 100-105 (150 for Epoch time)

10h Preset multiple registers Word (16 Bit) Write 100-105 (150 for Epoch time)

The registers (16 bits) of the real time clock are allocated in consecutive locations starting from the Modbus address
100. The registers contain the current value of the real time clock and writing a new value, the the real time clock will be
automatically updated.

Address Register Note

100 Second Second value (Range from 0 to 59)

101 Minute Minute value (Range from 0 to 59)

102 Hour Hour value (Range from 0 to 23)

103 Day Day value (Range from 1 to 31)

104 Month Month value (Range from 1 to 12)

105 Year Year value (Range from 1900 to 2037)

1.1.5 Reading RTC from modbus

To read the values of the real time clock, the Read Holding registers (code 0x03) command is used. We have to read
6 consecutive registers starting from the allocation address. The Modbus addressing requires an offset of 1, so 99
(0x0063).

Modbus RTU frames

Command frame: 01 03 00 63 00 06 35 D6
Answer frame: 01 03 0C 00 1E 00 30 00 0B 00 1D 00 09 07 DA A2 32

Modbus TCP/IP frames

Command frame: 00 00 00 00 00 06 01 03 00 63 00 06
Answer frame: 00 00 00 00 00 0F 01 03 0C 00 1E 00 30 00 0B 00 1D 00 09 07 DA

As you can see from the answer, the RTC values is:

Second: 30 (0x001E)
Minute: 48 (0x0030)
Hour: 11 (0x000B)
Day: 29 (0x001D)
Month: 9 (0x0009)
Year: 2010 (0x07DA)

1.1.6 Writing RTC from modbus

To write the values of the real time clock, the Preset multiple registers (code 0x10) command is used. We have to
write 6 consecutive registers starting from the allocation address. The Modbus addressing requires an offset of 1, so 99
(0x0063). Assume that we have to set these real time clock values:

Second: 30 (0x001E)
Minute: 48 (0x0030)
Hour: 11 (0x000B)
Day: 29 (0x001D)
Month: 9 (0x0009)
Year: 2010 (0x07DA)

Modbus RTU frames

Q09 Pag. 3/5

SlimLine IEC61131-3 Programming

Command frame: 01 10 00 63 00 06 08 00 1E 00 30 00 0B 00 1D 00 09 07 DA 5D C8
Answer frame: 01 10 00 63 00 06 B0 15

Modbus TCP/IP frames

Command frame: 00 00 00 00 00 13 01 10 00 63 00 06 08 00 1E 00 30 00 0B 00 1D 00 09 07 DA
Answer frame: 00 00 00 00 00 06 01 10 00 63 00 06

Q09 Pag. 4/5

SlimLine IEC61131-3 Programming

1.1.7 Epoch time access from modbus

There is also a 32 bits value for date/time Epoch time. The access to this read/write register is always performed using
two 16 bits registers.

Address Register Note

150 Epoch time Epoch time

1.1.8 Reading Epoch time from modbus

To read epoch time, the Read Holding registers (code 0x03) command is used. We read 2 consecutive registers
starting from the allocation address. The Modbus addressing requires an offset of 1, so 149 (0x0095).

Modbus RTU frames

Command frame: 01 03 00 95 00 02 D4 27
Answer frame: 01 03 04 30 B5 4C A3 90 6C

Modbus TCP/IP frames

Command frame: 00 00 00 00 00 06 01 03 00 95 00 02
Answer frame: 00 00 00 00 00 07 01 03 04 30 B5 4C A3

As you can see from the answer, the value is: 0x4CA330B5 → 1285763253 → GMT: Wed, 29 Sep 2010 12:27:33
UTC.

1.1.9 Writing Epoch time from modbus

To write the epoch time value, the Preset multiple registers (code 0x10) command is used. We have to write 2
consecutive registers starting from the allocation address. The Modbus addressing requires an offset of 1, so 149
(0x0095). Assume that we have to set these value:

GMT: Wed, 29 Sep 2010 12:27:33 UTC → 1285763253 → 0x4CA330B5

Modbus RTU frames

Command frame: 01 10 00 95 00 02 04 30 B5 4C A3 50 A3
Answer frame: 01 10 00 95 00 02 51 E4

Modbus TCP/IP frames

Command frame: 00 00 00 00 00 0B 01 10 00 95 00 02 04 30 B5 4C A3
Answer frame: 00 00 00 00 00 06 01 10 00 95 00 02

Q09 Pag. 5/5

	1 Communication protocols
	1.1 Modbus protocol
	1.1.1 Access to variables from modbus
	1.1.2 Reading variables from modbus
	1.1.3 Writing variables from modbus
	1.1.4 Access to Real time clock from modbus
	1.1.5 Reading RTC from modbus
	1.1.6 Writing RTC from modbus
	1.1.7 Epoch time access from modbus
	1.1.8 Reading Epoch time from modbus
	1.1.9 Writing Epoch time from modbus

